The Primary Cilium as a Novel Extracellular Sensor in Bone
نویسندگان
چکیده
Mechanically induced adaptation of bone is required to maintain a healthy skeleton and defects in this process can lead to dramatic changes in bone mass, resulting in bone diseases such as osteoporosis. Therefore, understanding how this process occurs could yield novel therapeutics to treat diseases of excessive bone loss or formation. Over the past decade the primary cilium has emerged as a novel extracellular sensor in bone, being required to transduce changes in the extracellular mechanical environment into biochemical responses regulating bone adaptation. In this review, we introduce the primary cilium as a novel extracellular sensor in bone; discuss the in vitro and in vivo findings of primary cilia based sensing in bone; explore the role of the primary cilium in regulating stem cell osteogenic fate commitment and finish with future directions of research and possible development of cilia targeting therapeutics to treat bone diseases.
منابع مشابه
A finite elements study on the role of primary cilia in sensing mechanical stimuli to cells by calculating their response to the fluid flow
The primary cilium which is an organelle in nearly every cell in the vertebrate body extends out of the cell surface like an antenna and is known as cell sensor of mechanical and chemical stimuli. In previous numerical simulations, researchers modeled this organelle as a cantilevered beam attached to the cell surface. In the present study, however, we present a novel model that accommodates for...
متن کاملMechanosensing by the Primary Cilium: Deletion of Kif3A Reduces Bone Formation Due to Loading
Primary cilia, solitary microtubule-based structures that grow from the centriole and extend into the extracellular space, have increasingly been implicated as sensors of a variety of biochemical and biophysical signals. Mutations in primary cilium-related genes have been linked to a number of rare developmental disorders as well as dysregulation of cell proliferation. We propose that primary c...
متن کاملTGFβ1 – induced recruitment of human bone mesenchymal stem cells is mediated by the primary cilium in a SMAD3-dependent manner
The recruitment of mesenchymal stem cells (MSCs) is a crucial process in the development, maintenance and repair of tissues throughout the body. Transforming growth factor-β1 (TGFβ1) is a potent chemokine essential for the recruitment of MSCs in bone, coupling the remodelling cycle. The primary cilium is a sensory organelle with important roles in bone and has been associated with cell migratio...
متن کاملMidbody and primary cilium of neural progenitors release extracellular membrane particles enriched in the stem cell marker prominin-1
Expansion of the neocortex requires symmetric divisions of neuroepithelial cells, the primary progenitor cells of the developing mammalian central nervous system. Symmetrically dividing neuroepithelial cells are known to form a midbody at their apical (rather than lateral) surface. We show that apical midbodies of neuroepithelial cells concentrate prominin-1 (CD133), a somatic stem cell marker ...
متن کاملPrimary Cilia-Mediated Mechanotransduction in Human Mesenchymal Stem Cells
Physical loading is a potent stimulus required to maintain bone homeostasis, partly through the renewal and osteogenic differentiation of mesenchymal stem cells (MSCs). However, the mechanism by which MSCs sense a biophysical force and translate that into a biochemical bone forming response (mechanotransduction) remains poorly understood. The primary cilium is a single sensory cellular extensio...
متن کامل